Практическое применение третьего закона ньютона. Законы Ньютона

Действие и противодействие предметов повсеместно встречается в повседневной жизни. Приведем 14 примеров третьего закон Ньютона , которому подчиняются взаимодействующие тела.

Взаимодействие предметов

Здания, мосты, мебель в комнатах, плоды на ветках, деревья, провода на столбах, корабли в море, тучи на небе, самолеты и воздушные шары за облаками - словом, все, что лежит, стоит, висит, плавает, летает,-не проваливается под землю, не тонет, не падает, не скатывается вниз только потому, что находится во взаимодействии с каким-либо другим предметом . Эти предметы, все равно будь то земля, подставка, подвеска, вода или воздух, являются опорой, и сила тяжести, влекущая все предметы по направлению к центру Земли, встречает со стороны опоры ответное действие. Это ответное действие мешает силе тяжести приводить предметы в движение, противодействует ей - ее уравновешивает, как одна чашка весов, мешая другой чашке опуститься, уравновешивает ее, что лежит в основе . Точно в таком же положении находится корабль, стоящий на якоре и остающийся на месте даже в том случае, когда ветер и течение стремятся его увлечь. Возникающие при этом силы называются силами реакции . Они уравновешивают действующую на тело силу и помогают ему оставаться в покое. Приведем 14 примеров возникновения таких сил, как подтверждение третьего закона Ньютона, это происходит при:

Строительство моста

При строительстве моста необходимо предварительно рассчитать, в какой мере мостовые опоры способны оказать противодействие той нагрузке, которая на них будет оказывать давление: смогут ли они ее выдержать, достаточен ли у опор запас противодействия, или, как говорят строители, запас прочности.
Расчеты ведутся, используя третий закон Ньютона. И строители сооружают опоры моста такими, чтобы они могли оказать противодействие любой нагрузке, какая может проявиться на мосту. Они считают, что опоры давят на мост снизу. Действие всегда равно противодействию - они равносильны, равноправны, и потому инженера-строители ведут расчет так, как им удобнее.

Фундамент зданий

Точно так же поступают инженеры, проектирующие фундаменты зданий . Они знают, что обыкновенный грунт способен оказывать противодействие тяжести здания с силой примерно в два-три килограмма на каждый квадратный сантиметр фундамента. При этом условии действие, то есть тяжесть всего здания, и противодействие, сопротивление грунта, сжимают фундамент сверху и снизу. На фундамент действуют две одинаковые, но направленные в противоположные стороны силы, о чем говорит третий закон Ньютона. Такие силы уравновешиваются и не могут сдвинуть фундамент с места, но сдавливают его, и, если запаса прочности этого фундамента не хватит, он разрушится, а здание обвалится.

Парашютист и санки

выбросился из самолета и падает вниз в затяжном прыжке. Действие в данном случае очевидно - парашютист падает. Но где же ответное действие, о котором говорит Ньютон? Его совершенно незаметно. И таких примеров можно найти великое множество. Дети, забравшись на снежную горку, скатываются с нее на санках , лыжник прыгает с трамплина. Лавина, сорвавшаяся с горы, дождевые капли, падающие из тучи, - во всех случаях падения ответное действие невидимо, неощутимо. Но это еще не значит, что его не существует.
Парашютист падает, потому что его притягивает Земля . Но притяжение взаимно: Земля притягивает к себе парашютиста, а парашютист притягивает к себе Землю. Парашютист падает на Землю, а Земля «падает» на парашютиста. Но масса парашютиста по сравнению с массой Земли ничтожна, и потому его движение быстро, а масса Земли огромна, и ее ответное и встречное движение совершенно неуловимо. Все это целиком и полностью относится и к санкам, скатывающимся с горки. Движение санок - тоже падение, но только происходящее по наклонному пути.

Взаимодействие железного бруска с магнитом

Эту мысль поясняет опыт Ньютона с железным брусочком и магнитом , плававшими в лодочках. Тогда Ньютон убедился, что не магнит притягивает к себе железо и не железо притягивается к магниту, а оба тела взаимодействуют - притягиваются друг к другу. В опытах Ньютона магнит и железо были одинаковы по весу. Но представьте себе, что для этого опыта взяли очень большой и тяжелый магнит и крошечный железный брусочек. В таком случае магнит только чуть-чуть подвинулся бы к железу, а железный брусочек поплыл бы к магниту гораздо быстрее. То же самое случилось бы и в том случае, если бы кусок железа был большим, а магнит маленьким: движение легкого предмета было бы заметным и наглядным, а ответное движение тяжелого предмета - неощутимым.

Притяжение планет

То же происходит и с планетами. Вот если бы возле Земли проходило какое-нибудь крупное небесное тело, то последствия их взаимного тяготения стали бы заметны. Это наблюдается в действительности. Иногда большие планеты солнечной системы - Юпитер и Сатурн - располагаются в пространстве так, что сила их тяготения заставляет Землю чуть-чуть удаляться от Солнца, тогда длительность нашего года, то есть время , увеличивается на несколько минут. Потом большие планеты уходят дальше по своим орбитам, и наш год снова укорачивается. Так, например, 1946 год был короче 1945 года приблизительно на десять минут, а 1945 год был короче 1944 года минут на одиннадцать. Такое изменение длины года нашей Земли, зависящее от положения других планет солнечной системы, обнаруживает, как действует третий закон движения далеко за пределами Земли - в безграничном мировом пространстве.
Спутник Земли, Луна, удерживается на своей орбите благодаря , но и сама притягивает Землю, вызывая на поверхности морей и слегка изменяя движение Земли около Солнца.

Прыжок из лодки

Человек, собирающийся выпрыгнуть из лодки на берег, не должен забывать о существовании третьего закона Ньютона для движения. Его действие обязательно вызовет равное и противоположно направленное ответное действие: в момент прыжка лодка отойдет назад, и неосторожный человек окажется не на берегу, а в воде. Бранить третий закон Ньютона бесполезно - надо было попросить сидящих в лодке упереться в дно веслом.

Летящий геликоптер

В истории техники записан случай, когда изобретатели важного и полезного механизма - геликоптера, недостаточно продумав конструкцию, упустили из виду третий закон движения.
Геликоптер, в отличие от обыкновенного самолета, может подниматься в воздух не с разбегу, а вертикально вверх. Подъемную силу этой машине дает большой пропеллер, вращающийся на вертикальной оси. Когда первый геликоптер испытывали на аэродроме, третий закон движения напомнил о себе. Так как несущий пропеллер вращался справа налево, то в силу третьего закона движения корпус геликоптера стал вращаться в противоположную сторону - слева направо. Геликоптер оказался своеобразной летающей каруселью, в которую ни один пассажир не соглашался сесть. Этот недостаток геликоптера устранили тем, что поставили на нем два несущих пропеллера, вращающихся в разные стороны. Вот тогда неприятное карусельное движение машины сразу прекратилось, потому что ее винты вращались в разные стороны, и их вредное действие взаимно уничтожилось, а подъемная сила, направленная вверх, сохранилась. В одновинтовых геликоптерах ставят дополнительный рулевой пропеллер, который противодействует вращению корпуса.

Как движутся плавающие в воде

Все плавающие в воде и по воде: рыбы, утки, бобры, угри, лягушки, жуки-плавунцы, (подробнее: ) и прочие водяные существа, а также пароходы, катера и лодки - движутся вперед только потому, что находятся во взаимодействии с водой, о чем говорит Ньютон. Они гребными винтами, веслами, плавниками, хвостами, лапками отталкивают воду назад, а сами в силу ответного действия плывут вперед.

Как движется все летающее

Всё летающее : самолеты, вертолеты, птицы, бабочки, комары, летучие мыши, а также аэросани и глиссеры - движутся только потому, что находятся во взаимодействии с воздухом. Они отталкивают воздух назад, а сами в силу ответного действия движутся вперед. Но что отталкивают назад обитатели суши, пользующиеся для передвижения ногами и колесами, остается неясным.

Как движутся автомобили и поезда

Они отталкивают то, что служит для них опорой: паровозы отталкивают рельсы, автомобили и лошади - асфальт шоссейных дорог и мостовых. Рельсы и покрытие шоссейных дорог намертво скреплены с землей, следовательно, все движущееся по земле отталкивает Землю, и земной шар должен поворачиваться в сторону, противоположную движению паровоза или автомобиля.
Но составляет многие миллиарды миллиардов тонн. Движение таких ничтожных по сравнению с Землей предметов, как паровозы и автомобили, на скорости вращения нашей планеты не сказывается. Кроме того, все поезда и автомобили движутся в разные стороны, и, когда один поезд едет направо, какой-то другой в это же время едет налево. Каждый автомобиль после работы возвращается обратно в гараж - туда, откуда он выехал утром. При встречном движении транспорта его воздействие на Землю взаимно уничтожается.

Движении тележки по рельсам

Представим себе, что на рельсах стоит длинная и легкая тележка . Ее оси вращаются в шарикоподшипниках. Подшипники хорошо смазаны, и потому тележка способна перекатываться с одного конца рельсов к другому почти без всякого трения. На этой тележке, с одного ее края, стоит человек. Попросим этого человека пробежать по тележке к другому ее концу. И как только человек побежит, тележка тоже придет в движение: она покатится в сторону, противоположную движению человека. Человек остановится - и остановится тележка. Человек побежит обратно - и тележка покатится в другую сторону. Движение человека в одну сторону заставляет тележку двигаться в противоположную сторону. Действие вызывает ответное действие, и они равны между собой: если тележка имеет такую же массу, как человек, то относительно земли она откатится в сторону настолько же, насколько подвинется человек.

Белка в колесе

В незапамятные времена люди придумали игрушку, которая показывает закон взаимодействия - третий закон Ньютона - простым и убедительным образом. Случается, охотники приносят домой ребятам на забаву маленьких бельчат. Бельчата растут, привыкают к людям и к жизни в неволе, становятся ручными. Но все-таки им трудно жить в тесных домах. В лесу белка целый день в движении: с ветки на ветку, с дерева на дерево, а в доме ей развернуться негде. И вот, может быть, тысячу лет назад, люди придумали для белок «физкультуру» - колесо, сделанное наподобие барабана, чтобы белка могла бегать внутри этого колеса. Белку впускают в колесо , и она принимается бегать, а колесо начинает поворачиваться в противоположном направлении и вертится до тех пор, пока бежит в нем белка. Разумеется, беличье колесо надо время от времени останавливать и выпускать зверька, чтобы дать ему отдохнуть и поесть. Белочки глупые - они могут бегать в колесе до изнеможения. Беличье колесо - замечательное и наглядное доказательство правильности третьего закона движения. Взаимодействие двух тел приводит к тому, что оба тела - и белка и колесо - движутся. В этом случае действие и ответное действие (противодействие) вызывают видимое движение. И действие и ответное действие равны между собой: когда белка бежит неторопливо, то и колесо крутится медленно, а когда белка ускоряет свой бег, колесо начинает вертеться быстрее. И действие и ответное действие противоположны: белка бежит в одну сторону, а колесо крутится в другую.

Пешком по столбу

Связисты и электромонтеры , которым часто приходится взбираться на телеграфные столбы , носят с собой очень простое приспособление, называемое «кошками». «Кошки» - это две железные дуги с острыми зубцами и площадочкой для ноги; они похожи по форме на серпы или на большие рога жука-оленя.
Связист надевает «кошки» на ноги и, ковыляя, потому что передвигаться по земле в «кошках» очень неудобно, подходит к столбу. Тут он охватывает одной «кошкой» столб, ее шипы врезаются в дерево или бетон. Связист, придерживаясь руками за столб, переносит всю тяжесть своего тела на «кошку» и одновременно закидывает вторую «кошку» так, чтобы она вцепилась повыше первой. Затем он переносит тяжесть тела на вторую «кошку», а первую переставляет еще выше. Так он «шагает» по гладкому вертикальному столбу, как по лестнице. Острые зубцы «кошек» обеспечивают связисту надежное взаимодействие со столбом - дают ноге хороший упор. Не было бы взаимодействия со столбом - и связист не мог бы влезть на него, именно это отразил в своем законе Ньютон.

Взаимодействие с землей

Словом, все, что бегает, ползает, прыгает, шагает, летает, плавает, лазает, может двигаться только потому, что находится во взаимодействии с землей , водой, воздухом, рельсами, стволами деревьев, столбами, веревками или лианами в тропическом лесу. Во всех случаях, без всякого исключения, действие одного предмета всегда встречает равное и противоположно направленное ответное действие (противодействие) со стороны других окружающих предметов. Слово «противодействие», которое употребил Ньютон, не нужно понимать буквально - ответное действие, оказываемое движущемуся предмету, отнюдь не мешает ему, не действует напротив или наперекор, а, наоборот, именно оно помогает, содействует его движению. Просто появляется сила противодействия, направленная противоположно силе действия . При этом надо заметить, что действие и ответное действие во всех случаях бывают приложены к разным предметам: действие - к земле, воде, воздуху, "Пешком" по столбу, рельсам, веревкам, столбам, к асфальту шоссе и так далее, а ответное действие - к ногам, лапам, колесам, копытам, гусеницам, крыльям, плавникам, пароходным винтам, к пропеллерам самолетов и «кошкам» связистов... Вывод несколько удивительный. Получается, что мы движемся не столько в силу нашего действия, сколько в силу ответного действия. Когда мы ходим, усилия наших ног направлены на то, чтобы толкать землю, а идем, движемся вперед только потому, что нас толкает земля. Может быть, такой вывод покажется странным, но это так и есть. В

Третий закон Ньютона показывает, что действие одного тела на другое имеет взаимный характер. Однако часто мы видим (или ощущаем) действие, распространяется только на одно из двух тел, взаимодействующих, в то время, как действие на второе тело остается незамеченным.

Согласно третьему закону Ньютона, камень притягивает Землю с такой же силой, с которой Земля притягивает камень. Поэтому, когда камень падает, он и Земля - оба движутся с ускорениями навстречу друг другу. Однако ускорение Земли меньше за ускорение камня во столько раз, во сколько раз масса Земли больше массы камня. Поэтому мы и замечаем часто лишь одну силу взаимодействия с двух - силу, действующую на камень со стороны Земли. А с аналогичным модулем сила, действующая на Землю со стороны камня, остается незамеченной.

В завершение урока можно рассмотреть несколько примеров проявления третьего закона Ньютона.

1. Явление отдачи. Сила, действующая на снаряд со стороны пушки, равна по модулю силе, действующей на пушку со стороны снаряда в момент выстрела. В автоматической стрелковом оружии явление отдачи используется для перезарядки оружия.

2. Реактивное движение. С огромной скоростью выбрасывая продукты сгорания топлива назад, ракета действует на них с необычайной силой. С такой же по модулю, но направленной вперед, силой продукты сгорания действуют на ракету.

3. Взаимодействие Земли и Солнца, Луны и Земли, движение планет и других небесных тел.

4. Движение транспортных средств.

Вопрос учащихся в ходе изложения нового материала

1. Вызывает постоянная сила постоянное ускорение?

2. Как зависит модуль ускорения от модуля силы?

3. Как направлено ускорение тела, если известно направление действующему силы?

4. Каково соотношение между силами, с которыми взаимодействуют два тела?

5. Что общего имеют две силы, с которыми взаимодействуют два тела?

6. Чем отличаются силы, с которыми взаимодействуют два тела?

7. Ли физическая разница между действием и противодействием?

8. Почему третий закон Ньютона называют законом взаимодействия?

Закрепление изученного материала

1. Тренируемся решать задачи

1. Тело массой 2 кг, движущегося на юг, изменяет скорость своего движения под действием постоянной силы 10 Н, направленной на север. Вычислите модуль и определите направление ускорения тела. Опишите характер движения тела.

2. Под действием силы 15 кН тело движется прямолинейно так, что его координата изменяется по закону х = -200 +9 t-3t2. Вычислите массу тела.

3. Проекция скорости тела, движущегося прямолинейно вдоль оси Ох, изменяется по закону vx-5-2t. Вычислите импульс тела и импульс силы за 1 с и за 4 с после начала движения, если масса тела 3 кг.

4. Небольшую лодку привлекается канатом к теплоходу. Почему теплоход не движется в сторону лодки?

5. Человек массой 60 кг, стоя на коньках, отбрасывает от себя шар массой 3 кг, придавая ей в горизонтальном ускорение 10 м/с2. Какое ускорение получает при этом сам человек?

6. Два человека тянут веревку в противоположные стороны, прикладывая силы 100 H каждый. Или разорвется веревка, если она выдерживает натяжение, не превышающей 190 Н?

В известной игре «перетягивание каната» обе партии действуют друг на друга (через канат) с одинаковыми силами, как это следует из закона действия и противодействия. Значит, выиграет (перетянет канат) не та партия, которая сильнее тянет, а та, которая сильнее упирается в Землю.

Рис. 72. Лошадь сдвинет и повезет нагруженные сани, потому что со стороны дороги на ее копыта действуют большие силы трения, чем на скользкие полозья саней

Как объяснить, что лошадь везет сани, если, как это следует из закона действия и противодействия, сани тянут лошадь назад с такой же по модулю силой , с какой лошадь тянет сани вперед (сила )? Почему эти силы не уравновешиваются? Дело в том, что, во-первых, хотя эти силы равны и прямо противоположны, они, приложены к разным телам, а во-вторых, и на сани и на лошадь действуют еще и силы со стороны дороги (рис. 72). Сила со стороны лошади приложена к саням, испытывающим, кроме этой силы, лишь небольшую силу трения полозьев о снег; поэтому сани начинают двигаться вперед. К лошади же, помимо силы со стороны саней , направленной назад, приложены со стороны дороги, в которую она упирается ногами, силы , направленные вперед и большие, чем сила со стороны саней. Поэтому лошадь тоже начинает двигаться вперед. Если поставить лошадь на лед, то сила со стороны скользкого льда будет недостаточна, и лошадь не сдвинет сани. То же будет и с очень тяжело нагруженным возом, когда лошадь, даже упираясь ногами, не сможет создать достаточную силу, чтобы сдвинуть воз с места. После того как лошадь сдвинула сани и установилось равномерное движение саней, сила будет уравновешена силами (первый закон Ньютона).

Подобный же вопрос возникает и при разборе движения поезда под действием электровоза. И здесь, как и в предыдущем случае, движение возможно лишь благодаря тому, что, кроме сил взаимодействия между тянущим телом (лошадь, электровоз) и «прицепом» (сани, поезд), на тянущее тело действуют со стороны дороги или рельсов силы, направленные вперед. На идеально скользкой поверхности, от которой нельзя «оттолкнуться», ни сани с лошадью, ни поезд, ни автомобиль не могли бы сдвинуться с места.

Рис. 73. При нагревании пробирки с водой пробка вылетает в одну сторону, а «пушка» катится в противоположную сторону

Третий закон Ньютона позволяет рассчитать явление отдачи при выстреле. Установим на тележку модель пушки, действующую при помощи пара (рис. 73) или при помощи пружины. Пусть вначале тележка покоится. При выстреле «снаряд» (пробка) вылетает в одну сторону, а «пушка» откатывается в другую. Откат пушки и есть результат отдачи. Отдача есть не что иное, как противодействие со стороны снаряда, действующее, согласно третьему закону Ньютона, на пушку, выбрасывающую снаряд. Согласно этому закону сила, действующая со стороны пушки на снаряд, все время равна силе, действующей со стороны снаряда на пушку, и направлена противоположно ей. Таким образом, ускорения, получаемые пушкой и снарядом, направлены противоположно, а по модулю обратно пропорциональны массам этих тел. В результате снаряд и пушка приобретут противоположно направленные скорости, находящиеся в том же отношении. Обозначим скорость, полученную снарядом, через , а скорость, полученную пушкой, через , а массы этих тел обозначим через и соответственно. Тогда

Здесь и - модули скоростей.

Выстрел из всякого оружия сопровождается отдачей. Старинные пушки после выстрела откатывались назад. В современных орудиях ствол укрепляется на лафете не жестко, а при помощи приспособлений, которые позволяют стволу отходить назад; затем пружины снова возвращают его на место. В автоматическом огнестрельном оружии явление отдачи используется для того, чтобы перезарядить орудие. При выстреле отходит только затвор. Он выбрасывает использованную гильзу, а затем пружины, возвращая его на место, вводят в ствол новый патрон. Этот принцип используется не только в пулеметах и автоматических пистолетах, но и в скорострельных пушках.

В известной игре «перетягивание каната» обе партии действуют друг на друга (через канат) с одинаковыми силами, как это следует из закона действия и противодействия. Значит, выиграет (перетянет канат) не та партия, которая сильнее тянет, а та, которая сильнее упирается в Землю.

Как объяснить, что лошадь везет сани, если, как это следует из закона действия и противодействия, сани тянут лошадь назад с такой же по модулю силой F 2 , с какой лошадь тянет сани вперед (сила F 1)? Почему эти силы не уравновешиваются?

Дело в том, что, во-первых, хотя эти силы равны и прямо противоположны, они приложены к разным телам, а во-вторых, и на сани и на лошадь действуют еще и силы со стороны дороги (рис. 9).

Сила F 1 со стороны лошади приложена к саням, испытывающим, кроме этой силы, лишь небольшую силу трения f 1 полозьев о снег; поэтому сани начинают двигаться вперед. К лошади же, помимо силы со стороны саней F 2 направленной назад, приложены со стороны дороги, в которую она упирается ногами, силы f 2 , направленные вперед и большие, чем сила со стороны саней. Поэтому лошадь тоже начинает двигаться вперед. Если поставить лошадь на лед, то сила со стороны скользкого льда будет недостаточна; и лошадь не сдвинет сани. То же будет и с очень тяжело нагруженным возом, когда лошадь, даже упираясь ногами, не сможет создать достаточную силу, чтобы сдвинуть воз с места. После того как лошадь сдвинула сани и установилось равномерное движение саней, сила f 1 будет уравновешена силами f 2 (первый закон Ньютона).

Подобный же вопрос возникает и при разборе движения поезда под действием электровоза. И здесь, как и в предыдущем случае, движение возможно лишь благодаря тому, что, кроме сил взаимодействия между тянущим телом (лошадь, электровоз) и «прицепом» (сани, поезд), на тянущее тело действуют со стороны дороги или рельсов силы, направленные вперед. На идеально скользкой поверхности, от которой нельзя «оттолкнуться», ни сани с лошадью, ни поезд, ни автомобиль не могли бы сдвинуться с места.

Третий закон Ньютона позволяет объяснить явление отдачи при выстреле. Установим на тележку модель пушки, действующую при помощи пара (рис. 10) или при помощи пружины. Пусть вначале тележка покоится. При выстреле «снаряд» (пробка) вылетает в одну сторону, а «пушка» откатывается в другую.

Откат пушки и есть результат отдачи. Отдача есть не что иное, как противодействие со стороны снаряда, действующее, согласно третьему закону Ньютона, на пушку, выбрасывающую снаряд. Согласно этому закону сила, действующая со стороны пушки на снаряд, все время равна силе, действующей со стороны снаряда на пушку, и направлена противоположно ей.

  • 2. Виды механического движения - прямолинейное равномерное, прямолинейное равноускоренное, равномерное движение по окружности
  • 3. Законы Ньютона. Примеры проявления законов Ньютона в природе и использование этих законов в технике
  • 4. Взаимодействие тел: силы тяжести, упругости, трения. Примеры проявления этих сил в природе и технике
  • 5. Импульс тела. Закон сохранения импульса. Примеры проявления закона сохранения импульса в природе и использования этого закона в технике
  • 6. Механическая работа и мощность. Простые механизмы. Кпд простых механизмов
  • 8. Механические волны. Длина волны, скорость распространения волны и соотношения между ними. Звуковые волны. Эхо
  • 9. Потенциальная и кинетическая энергия. Примеры перехода энергии из одного вида в другой. Закон сохранения энергии
  • 11. Передача давления газами, жидкостями и твердыми телами. Закон Паскаля и его применение в гидравлических машинах
  • 12. Атмосферное давление. Приборы для измерения атмосферного давления. Воздушная оболочка Земли и ее роль в жизнедеятельности человека
  • 13. Действие жидкостей и газов на погруженное в них тело. Архимедова сила, причины ее возникновения. Условия плавания тел
  • 14. Внутренняя энергия тел и способы ее изменения. Виды теплопередачи, их учет и использование в быту
  • 15. Плавление кристаллических тел и объяснение этого процесса на основе представлений о строении вещества. Удельная теплота плавления
  • 16. Испарение и конденсация. Объяснение этих процессов на основе представлений о строении вещества. Кипение. Удельная теплота парообразования
  • 19. Явление электромагнитной индукции. Примеры проявления электромагнитной индукции и ее использование в технических устройствах
  • 20. Закон Ома для участка цепи. Последовательное и параллельное соедин-е проводников
  • 21. Законы отражения и преломления света. Показатель преломления. Практическое использование этих законов
  • 22. Линзы. Фокус линзы. Построение изображений в собирающей линзе. Использование линз в оптических приборах
  • 3. Законы Ньютона. Примеры проявления законов Ньютона в природе и использование этих законов в технике

    Первый закон Ньютона. Существуют такие системы отсчета, относительно которых поступательно движущееся тело сохраняет свою скорость постоянной, если на него не действуют другие тела (или действия других тел компенсиру­ются). Этот закон часто называется законом инерции, поскольку движение с постоянной скоростью при компенсации внешних воздействий на тело называется инерцией. Второй закон Ньютона. Сила, действующая на тело, равна произведению массы тела на сооб­щаемое этой силой ускорение .
    - ускорение прямо пропорционально действующей (или равнодействующей) силе и обратно пропорцио­нально массе тела. Третий закон Ньютона. Из опытов по взаимодействию тел следует
    , из второго закона Ньютона
    и
    , поэтому
    . Силы взаимодействия между телами: направлены по одной прямой, равны по величине, противоположны по направлению, приложены к разным телам (по­этому не могут уравновешивать друг друга), всегда действуют парами и имеют одну и ту же природу. Законы Ньютона выполняются одновременно, они позволяют объяснить закономерности движения планет, их естественных и искусственных спутников. Иначе, позволяют предвидеть траектории движения планет, рассчитывать траектории космических ко­раблей и их координаты в любые заданные моменты времени. В земных условиях они позволяют объяс­нить течение воды, движение многочисленных и раз­нообразных транспортных средств (движение автомо­билей, кораблей, самолетов, ракет). Для всех этих движений, тел и сил справедливы законы Ньютона.

    4. Взаимодействие тел: силы тяжести, упругости, трения. Примеры проявления этих сил в природе и технике


    Опыты с различными телами показывают, что при взаимодействии двух тел оба тела получают ускорения, направленные в противоположные стороны. При этом отношение абсолютных значений уско­рений взаимодействующих тел равно обратному отношению их масс
    . Обычно вычисляют ускорение одного тела (того, движение которого изучается). Влияние же другого тела, вызывающего ускорение, коротко называется силой. В механике рассматриваются силатяжести, силаупругости и силатрения. Сила тяжести -это сила, с которой Земля притягивает к себе все тела, находящиеся вблизи ее поверхности(
    ). Сила тяжести приложена к самому телу и направлена вертикально вниз (рис. 1а). Сила упругости возникает при деформации тела (рис. 1б), она направлена перпендикулярно по­верхности соприкосновения взаимодействующих тел. Сила упругости пропорциональна удлинению:
    .Знак «-»показывает, что сила упругости на­правлена в сторону, противоположную удлинению,k - жесткость (пружины) зависит от ее геометриче­ских размеров и материала. Сила, возникающая в месте соприкосновения тел и препятствующая их относительному перемеще­нию, называется силой трения. Если тело скользит по какой-либо поверхности, то его движению препят­ствует сила трения скольжения
    , гдеN - сила реакции опоры (рис. 2),m -коэффициент тре­ния скольжения. Сила трения скольжения всегда направлена против движения тела. Сила тяжести и сила упругости -это силы, зависящие от координат взаимодействующих тел от­носительно друг друга. Сила трения зависит от скорости тела, но не зависит от координат. Как в природе, так и в технике эти силы про­являются одновременно или парами. Например, сила трения увеличивается при увеличении силы тяжести. В быту часто полезное трение усиливают, а вредное -ослабляют (применяют смазку, заменяют трение скольжения трением качения).