Солнечный свет как энергетический ресурс. Солнечная энергия

Солнечное излучение поглощается поверхностью суши, океанами (покрывают около 71 % поверхности земного шара) и атмосферой. Абсорбция солнечной энергии через атмосферную конвекцию , испарение и конденсация водяного пара является движущей силой круговорота воды и управляет ветрами. Солнечные лучи абсорбоване океаном и сушей поддерживает среднюю температуру на поверхности Земли, что ныне составляет 14 °C . Благодаря фотосинтезу растений солнечная энергия может превращаться в химическую, которая хранится в виде пищи, древесины и биомассы, которая в конце концов превращается в ископаемое топливо .

Видео по теме

Перспективы использования

Солнечная энергия является источником энергии ветра, воды, тепла морей, биомассы, а также причиной образования на протяжении тысячелетий торфа, бурого и каменного угля, нефти и природного газа, однако эта опосредованная энергия и накопленная в течение тысяч и миллионов лет. Энергию Солнца можно использовать и непосредственно, как источник электроэнергии и тепла. Для этого нужно создать устройства, которые концентрируют энергию Солнца на малых площадях и в малых объемах.

Общее количество солнечной энергии, которую поглощает атмосфера, поверхность суши и океана составляет примерно 3 850 000 эксаджоулей (ЭДж) в год . За один час, это дает больше энергии, чем весь мир использовал за целый 2002 год . Фотосинтез забирает около 3 000 ЭДж в год на производство биомассы . Количество солнечной энергии, которая достигает поверхность земли такая большая, что за год она примерно вдвое превзойдет всю энергию, которую потенциально можно выработать со всех невозобновляемых источников: угля, нефти, урановых руд .

""Годовое поступление солнечного излучения и потребления энергии человеком"" 1
Солнце 3 850 000
ветер 2 250
Потенциал биомассы ~200
Мировое потребление энергии 2 539
Электроэнергия 2 ~67
1 Энергию подано в эксаджоулях 1 ЭДж = 10 18 Дж = 278 ТВт/ч
2 Потребления по состоянию на 2010 год

Количество солнечной энергии, которую потенциально может использовать человек, отличается от количества энергии, которое находится вблизи земной поверхности. Такие факторы как смена дня и ночи, облачность и доступная поверхность суши уменьшают количество энергии, пригодной для использования.

Географическое положение влияет на энергетический потенциал, поскольку ближе к экватора области принимают большее количество солнечного излучения. Однако, использование устройств на фотовольтації , которые могут изменять свою ориентацию в соответствии с положением Солнца на небосклоне, может значительно повышать потенциал солнечной энергии в отдалённых от экватора областях.

Доступность земель значительно влияет на возможную добычу энергии, поскольку солнечные панели можно устанавливать лишь на землях, которые для этого подходят и не используются для других целей. Например, подходящим местом для установки панелей стали крыши .

Солнечные системы делятся на активные и пассивные, в зависимости от способа впитать солнечную энергию, ее переработать и распределить.

Активные солнечные технологии используют фотовольтаику, концентрированную солнечную энергию (англ. ) , солнечные коллекторы , насосы и вентиляторы, чтобы превратить солнечное излучение в полезный выход энергии. Среди пассивных солнечных технологий: использование материалов с благоприятными тепловыми характеристиками, дизайн помещений с естественной циркуляцией воздуха и выгодное расположение зданий относительно положения Солнца. Активные солнечные технологии повышают энергоснабжения, тогда как пассивные уменьшают потребность в дополнительных источниках энергии .

Годовой потенциал солнечной энергии по регионам (ЭДж)
Регион Северная Америка Латинская Америка и Карибы Западная Европа Центральная и Восточная Европа Страны бывшего Советского Союза Ближний Восток и Северная Африка Sub-Saharan Африка Pacific Asia Южная Азия Centrally planned Asia Pacific OECD
Минимум 181,1 112,6 25,1 4,5 199,3 412,4 371,9 41,0 38,8 115,5 72,6
Максимум 7 410 3 385 914 154 8 655 11 060 9 528 994 1 339 4 135 2 263

В это время работают нагревательные устройства, которые аккумулируют энергию Солнца, а также опытные образцы электродвигателей и автомобилей, которые используют энергию Солнца.

Солнечная энергия, как полагают, к концу века может составить не более 1 % от общего количества используемой энергии. Еще в 1870 году в Чили было построено солнечный опреснитель морской воды, который производил до 30 т пресной воды в сутки и работал более 40 лет. Благодаря применению гетеропереходов коэффициент полезного действия солнечных батарей уже достигает 25 %. Налажено производство солнечных батарей в виде длинной поликристаллической кремниевой ленты, которые имеют КПД более 10 %.

Тепловая энергия

Технологии, которые используют тепловую энергию солнца, можно применять для нагрева воды, обогрева помещений, охлаждения помещений и генерации технологической теплоты .

По состоянию на 2007 год общая установленная мощность солнечных систем для нагрева воды составляла примерно 154 тепловых ГВт. Китай является мировым лидером в этой области, установив по состоянию на 2006 год 70 ГВт тепловых и планируя к 2020 году достичь 210 ГВт тепловых . Израиль и Кипр являются мировыми лидерами по использованию солнечных систем для подогрева воды на душу населения с 90 % домохозяйств, которые их установили . В США, Канаде и Австралии солнечные водоподогреватели служат преимущественно для подогрева плавательных бассейнов, с установленной мощностью состоянию на 2005 год около 18 ГВт тепловых .

Обогрев, охлаждение и вентиляция

Приготовление еды

Солнечные печи используют солнечный свет для приготовления пищи, сушки и пастеризации . Их можно разделить на три широких категории: коробчасті печи (англ. box cookers ), панельные печи (англ. panel cookers ) и отражательные печи (англ. reflector cookers ) . Простейшая солнечная печь - коробчаста, которую впервые построил Орас Бенедикт де Соссюр 1767 года . Простая коробчаста печь состоит из изолированного контейнера с прозрачной крышкой. Она может эффективно применяться при частично закрытом облаками небе и обычно достигает температуры 90-150 °C . Панельная печь использует отражающую панель, чтобы направить солнечные лучи на изолированный контейнер и достичь температуры, сравнимой с коробчастою печью. Отражательные печи используют различную геометрию отражателя (тарелку, корыто, зеркала Френеля), чтобы сфокусировать лучи на контейнер. Эти печи достигают температуры 315 °C, но требуют прямого луча и их нужно переставлять вместе с изменением положения Солнца .

Технологическое тепло

Обработка воды

Солнечное опреснение можно использовать, чтобы превратить соленую или солоноватую воду на питьевую. Впервые пример такого преобразования зафиксировали арабские алхимики XVI века . Впервые масштабный проект из солнечного опреснения построили в 1872 году в чилийском шахтерском городке Лас-Салинас . Завод, который имел площадь солнечного коллектора 4700 м2 мог производить до 22 700 л питьевой воды и оставался в работе на протяжении 40 лет . Individual still designs include single-slope, double-slope (greenhouse or type), vertical, conical, inverted absorber, multi-wick, and multiple effect. . Эти опреснители могут работать в пассивном, активном и гибридном режимах. Double-slope казани наиболее экономически выгодные для децентрализованных бытовых нужд, тогда как active multiple effect units более подходят для широкомасштабных проектов .

Солнечную энергию можно использовать в ставках-усереднювачах для обработки сточных вод без применения химикатов и затраты электроэнергии. Еще одним преимуществом для окружающей среды является то, что водоросли живут в таких прудах и потребляют диоксид углерода в процессе фотосинтеза, хотя они могут вырабатывать токсичные вещества, которые делают воду непригодной для употребления .

Производство электроэнергии

Солнечная энергетика работает за счет преобразования солнечного света в электроэнергию . Это может происходить или непосредственно, с использованием фотовольтаики , или косвенно, с использованием систем концентрированной солнечной энергии (англ. ) , в которых линзы и зеркала собирают солнечный свет с большой площади в тонкий луч, а механизм слежения отслеживает положение Солнца. Фотовольтаика превращает свет в электрический ток с помощью фотоэффект .

Предполагают, что солнечная энергетика станет крупнейшим источником электроэнергии к 2050 году, в которой на долю фотовольтаики и концентрированной солнечной энергии будет приходиться 16 и 11 % мирового производства электроэнергии соответственно .

Коммерческие электростанции на концентрированной солнечной энергии впервые появились в 1980-х годах. После 1985 года установка этого типа SEGS (англ. ) в пустыне Мохаве (Калифорния) 354 МВт стала крупнейшей солнечной электростанцией в мире. Среди других солнечных электростанций этого типа СЭС Солнова (англ. ) (150 МВт) и СЭС Андасол (англ. ) (100 МВт), обе в Испании. Среди крупнейших электростанций на фотовольтаїці (англ. ) : Agua Caliente Solar Project (250 МВт) в США, и Charanka Solar Park (221 МВТ) в Индии . Проекты мощностью более 1 ГВт находятся на стадии разработки, но большинство установок на фотовольтаїці, мощностью до 5 КВт, имеют небольшой размер и расположены на крышах.По состоянию на 2013 год на солнечную энергию приходилось менее 1 % от электроэнергии в мировой сети .

Архитектура и городское планирование

Наличие солнечного света влияла на дизайн зданий от самого начала истории архитектуры . Впервые продвинутые методы солнечной архитектуры и городского планирования ввели древние греки и китайцы, которые ориентировали свои дома на юг, чтобы обеспечить их освещением и теплом .

Сельское хозяйство и растениеводство

См. также

Примечания

  1. Smil (1991), p. 240
  2. Радиационный и световой режим
  3. Natural Forcing of the Climate System . Intergovernmental Panel on Climate Change. Проверено 29 сентября 2007.
  4. Сомервилл, Richard. Historical Overview of Climate Change Science (PDF). Intergovernmental Panel on Climate Change. Проверено 29 сентября 2007.
  5. Vermass, Wim. An Introduction to Photosynthesis and Its Applications . Arizona State University. Проверено 29 сентября 2007.
  6. Smil (2006), p. 12
  7. http://www.nature.com/nature/journal/v443/n7107/full/443019a.html
  8. Powering the Planet: Chemical challenges in solar energy utilization (PDF). Проверено 7 августа 2008.
  9. Energy conversion by organisms photosynthetic . Food and Agriculture Organization of the United Nations. Проверено 25 мая 2008.
  10. Exergy Flow Charts - GCEP . stanford.edu .
  11. Archer, Cristina. Evaluation of Global Wind Power . Stanford. Проверено 3 июня 2008.
  12. . Renewable and Appropriate Energy Laboratory. Проверено 6 декабря 2012.
  13. Total Primary Energy Consumption . Energy Information Administration . Проверено 30 июня 2013.
  14. Total Electricity Consumption Net . Energy Information Administration . Проверено 30 июня 2013.
  15. Energy and the challenge of sustainability (PDF). UN Development Programme and World Energy Council (September 2000). Проверено 17 января 2017.

Энергия солнца – это всего лишь поток фотонов. И вместе с тем это – один из основополагающих факторов, обеспечивающих само существование жизни в нашей биосфере. Поэтому вполне естественно, что солнечный свет активно используется человеком не только в климатическом аспекте, но и в качестве альтернативного источника энергии.

Где используется солнечная энергия

Сфера применения энергии солнца очень обширна, и с каждым годом она становится все больше. Так, еще совсем недавно дачный душ с солнечным нагревателем воспринимался как нечто необыкновенное, а возможность использования солнечного света для домашних электросетей и вовсе казалась фантастикой. Сегодня же никого не удивишь не только автономной гелиостанцией, но и мобильными зарядками на солнечных батареях и даже мелкой техникой (например, часами), работающей на фотогальваническом эффекте.

Вообще же использование солнечной энергии очень востребовано в таких областях, как:

  • Сельское хозяйство;
  • Энергоснабжение санаториев и пансионатов;
  • Космическая отрасль;
  • Природоохранная деятельность и экотуризм;
  • Электрификация отдаленных и сложнодоступных регионов;
  • Уличное, садовое и декоративное освещение;
  • Сфера ЖКХ (ГВС, придомовое освещение);
  • Мобильная техника (гаджеты и зарядные модули на солнечных батареях).

Ранее энергия солнца использовалась главным образом в космической отрасли (энергоснабжение спутников, станций и т.д.) и в промышленности, но со временем альтернативную энергетику начали активно развивать и в быту. Одними из первых объектов, оснащенных солнечными установками, стали южные пансионаты и санатории, особенно расположенные в уединенных районах.

Солнечные установки и их преимущества

Успешное применение первых гелиомодулей доказало, что энергия солнечных лучей обладает массой преимуществ перед традиционными источниками. Ранее главными достоинствами гелиоустановок называли лишь экологичность и неисчерпаемость (а также бесплатность) солнечного света.

Но на самом деле список достоинств гораздо шире:

  • Автономность, так как не требуется никаких внешних энергокоммуникаций;
  • Стабильность подачи питания, в силу специфики солнечный ток не подвержен скачкам напряжения;
  • Экономичность, так как средства тратятся только один раз, при монтаже установки;
  • Солидный ресурс эксплуатации (свыше 20 лет);
  • Всесезонное использование, солнечные установки эффективно работают даже в морозы и облачную погоду (с незначительным снижением КПД);
  • Простота и удобство сервисного обслуживания, так как требуется только изредка очищать лицевые стороны панелей от загрязнений.

Единственным недостатком можно назвать только зависимость от солнца и тот факт, что такие установки не работают ночью. Но эта проблема решается за счет подключения специальных аккумуляторов, в которых накапливается выработанная за день энергия солнечного света.

Фотоэнергия

Фотоэнергия – это один из двух способов использования излучения солнца. Это постоянный ток, вырабатываемый под действием солнечных лучей. Происходит такое преобразование в так называемых фотоячейках, которые, по сути, представляют собой двухслойную структуру из двух полупроводников разного типа. Нижний полупроводник относится к p-типу (с недостатком электронов), верхний – к n-типу с избытком электронов.

Электроны n-проводника поглощают энергию падающих на них лучей солнца и покидают свои орбиты, причем энергетического импульса достаточно для того, чтобы они перешли в зону p-проводника. При этом образуется направленный электронный поток, называемый фототоком. Иными словами, вся структура работает как своеобразные электроды, в которых под воздействием солнца генерируется электроэнергия.

Для производства таких фотоячеек применяют кремний. Объясняется это тем, что кремний во-первых, широко распространен, а во-вторых, его промышленная обработка не требует больших затрат.

Фотоячейки из кремния бывают:

  • Монокристаллическими. Изготавливаются из монокристаллов и отличаются равномерной структурой с чуть более высоким КПД (примерно 20%), но при этом дороже стоят.
  • Поликристаллическими. Имеют неравномерную структуру за счет использования поликристаллов и несколько более низкий КПД (15-18%), но гораздо дешевле моновариантов.
  • Тонкопленочными. Изготавливаются методом напыления аморфного кремния на тонкопленочную подложку. Отличаются гибкой структурой и самой низкой себестоимостью производства, однако имеют вдвое больше габариты по сравнению с кристаллическими аналогами той же мощности.

Сферы применения каждого типа ячеек весьма обширны и определяются их эксплуатационными особенностями.

Солнечные коллекторы

Гелиоколлекторы также используются как преобразователи солнечной энергии, но принцип их действия совершенно иной. Они преобразуют падающий свет не в электрическую, а в тепловую энергию за счет нагрева жидкого теплоносителя. Применяют их либо для ГВС, либо для отопления домов. Главный элемент любого коллектора – абсорбер, он же – теплопоглотитель. Абсорбер представляет собой либо плоскую пластину, либо трубчатую вакуумированную систему, внутри которой циркулирует теплоноситель (это или простая вода, или антифриз). Причем абсорбер обязательно красится в черный цвет специальной краской для увеличения коэффициентов поглощения.

Именно по типу абсорберов коллекторы делят на плоские и вакуумные. У плоских теплопоглотитель выполняют в виде металлической пластины, к которой снизу припаян металлический же змеевик с теплоносителем. У вакуумных абсорбер изготавливается их нескольких соединенных между собой на концах стеклянных трубок. Трубки делают двойными, между стенками создают вакуум, а внутри помещают стержень с теплоносителем. Все стержни сообщаются между собой посредством специальных соединителей в местах стыков труб.

Абсорберы обоих типов помещают в прочный легкий корпус (обычно – из алюминия или ударопрочных пластиков) и надежно теплоизолируют от стенок. Лицевая же сторона корпуса закрывается прозрачным ударостойким стеклом с максимальной проницаемостью для фотонов. Это обеспечивает лучшее поглощение солнечной энергии.

Особенности функционирования

Принцип работы обоих типов коллекторов аналогичен. Нагреваясь в коллекторе до высоких температур, теплоноситель проходит по соединительным шлангам в теплообменный бак, который наполнен водой. Через бак он проходит по змеевидной трубке, отдавая свое тепло воде. Остывший теплоноситель выходит из бака и подается обратно в коллектор. По сути, это – своеобразный «солнечный» кипятильник», только вместо нагревательной спирали используется змеевик в баке, а вместо электросети – солнечный свет.

Конструктивные различия определяют и разницу в применении вакуумных и плоских коллекторов. Использование солнечного излучения при помощи вакуумных моделей возможно круглый год, в том числе и зимой, и в межсезонье. Плоские же варианты лучше работают в летний период. Однако они дешевле и проще вакуумных, поэтому оптимально подходят именно для сезонных целей.

Солнечная энергия в городах (экодома)

Гелиоэнергетика активно применяется не только для частных домов, но и для городских строений. Как человек использует солнечную энергию в мегаполисах, догадаться не сложно. Она также применяется для обогрева и ГВС зданий, причем нередко – целых кварталов.

В последние годы активно развиваются и воплощаются концепции экодомов, полностью работающих на альтернативных источниках энергии. В них используются комбинированные системы, обеспечивающие эффективное получение солнечной, ветровой и тепловой энергии земли. Нередко такие дома не только целиком покрывают свои энергетические нужды, но и передают излишки в городские сети. Причем совсем недавно проекты таких экозданий появились и в России.

Гелиостанции и их виды

В южных регионах с высокой инсоляцией строят не просто отдельные гелиоустановки, но целые станции, вырабатывающие энергию в промышленных масштабах. Количество солнечной энергии, производимое ими, весьма велико и многие страны с подходящим климатом уже начали постепенный перевод всей энергосистемы на такой альтернативный вариант. По принципу работу станции делят на фототермические и фотоэлектрические. Первые работают по методу коллекторов и подают в дома разогретую воду для ГВС, вторые же вырабатывают непосредственно электричество.

Существует несколько видов гелиостанций:

  • Башенные. Позволяют получать сверхнагретый водяной пар, подаваемый на генераторы. В центре станции базируется башня с водным резервуаром, вокруг нее размещают гелиостаты (зеркальные), которые фокусируют лучи на резервуаре. Это достаточно эффективные станции, главный их недостаток – сложность точного позиционирования зеркал.
  • Тарельчатые. Состоят из приемника гелиоэнергии и отражателя. Отражатель – тарелкообразное зеркало, концентрирующее излучение на приемнике. Такие концентраторы солнечной энергии располагаются на небольшом удалении от приемника, а их количество определяется требуемой мощностью установки.
  • Параболические. Трубки с теплоносителем (обычно – маслом) помещают в фокусе длинного параболического зеркала. Разогретое масло отдает тепло воде, та вскипает и вращает генераторы.
  • Аэростатные. По сути, это самые эффективные и мобильные гелиостанции на Земле. Их главный элемент – аэростат с фотоэлектрическим слоем, наполненный водяным паром. Он поднимается высоко в атмосферу (обычно выше облаков). Разогретый пар из шара по гибкому паропроводу подается на турбину, на выходе из нее конденсируется и вода насосом поднимается обратно в шар. Попав в шар, вода испаряется и цикл продолжается.
  • На фотобатареях. Это уже привычные всем установки на солнечных батареях, которые используются для частных домов. Они обеспечивают получение электроэнергии и подогрев воды в нужных объемах.

Сегодня разного рода гелиостанции (в том числе и комбинированные, объединяющие несколько типов) играют все большую роль в энерговыработке многих стран. А некоторые государства перестраивают свою энергетику таким образом, чтобы через несколько лет вообще практически полностью перейти на альтернативные системы.

Без энергии невозможна жизнь на планете. Физический закон сохранения энергии говорит о том, энергия не может возникнуть из ничего и не исчезает бесследно. Она может быть получена из природных ресурсов, таких как уголь, природный газ или уран, и превращена в удобные для нас формы, например, в тепло или свет. В окружающем нас мире можем находить различные формы накопления энергии, но важнейшим для человека является энергия, которую дают солнечные лучи- солнечная энергия.

Солнечная энергия относится к восстанавливаемым источникам энергии, то есть восстанавливается без участия человека, естественным путем. Это один из экологически безопасных энергетических источников, который не загрязняет окружающую среду. Возможности применения солнечной энергии практически неограниченны и ученые всего мира работают над разработкой систем, которые расширяют возможности использования солнечной энергии .

Один квадратный метр Солнца излучает 62 900 кВт энергии. Это примерно соответствует мощности работы 1 миллиона электрических ламп. Впечатляет такая цифра — Солнце дает Земле ежесекундно 80 тысяч миллиардов кВт, т.е в несколько раз больше, чем все электростанции мира. Перед современной наукой стоит задача — научиться наиболее полно и эффективно использовать энергию Солнца, как наиболее безопасную. Ученые считают, что повсеместное использование солнечной энергии — это будущее человечества.

Мировые запасы открытых месторождений угля и газа, при таких темпах их использования, как сегодня, должны истощиться в ближайшие 100 лет. Подсчитано, что в еще не разведанных месторождениях запасов горючих ископаемых хватило бы на 2-3 столетия. Но при этом наши потомки были бы лишены этих энергоносителей, а продукты их сгорания нанесли бы колоссальный ущерб окружающей среде.

Огромный потенциал имеет атомная энергия. Однако, Чернобыльская авария в апреле 1986 года показала, какие серьезные последствия может повлечь использование ядерной энергии. Общественность всего мира признала, что использование атомной энергии в мирных целях экономически оправдано, но следует соблюдать строжайшие меры безопасности при ее использовании.

Следовательно, наиболее чистый, безопасный источник энергии — Солнце!

Солнечная энергия может быть преобразована в полезную энергию посредством использования активных и пассивных солнечных энергетических систем.

Пассивные системы использования солнечной энергии.

Самый примитивный способ пассивного использования солнечной энергии — это окрашенная в темный цвет емкость для воды. Темный цвет, аккумулируя солнечную энергию , превращает ее в тепловую — вода нагревается.

Однако, есть более прогрессивные методы пассивного использования солнечной энергии . Разработаны строительные технологии, которые при проектировании зданий, учета климатических условий, подбора строительных материалов максимально используют солнечную энергию для обогрева или охлаждения, освещения зданий. При таком проектировании сама конструкция здания является коллектором, аккумулирующей солнечную энергию .

Так, в 100г н.э Плиний Младший построил небольшой дом на севере Италии. В одной из комнат окна сделаны из слюды. Оказалось, что эта комната теплее других и на ее обогрев требовалось меньше дров. В этом случае слюда являлась как изолятор, задерживающий тепло.

Современные строительные конструкции учитывают географическое положение зданий. Так, большое количество окон, выходящие на южную сторону, предусматривают в северных регионах, чтобы поступало больше солнечного света и тепла, и ограничивают количество окон с восточной и западной стороны, чтобы ограничить поступление солнечного света летом. В таких зданиях ориентация окон и расположение, тепловая нагрузка и теплоизоляция — единая конструкторская система при проектировании.

Такие здания экологически чистые, энергетически независимые и комфортные. В помещениях много естественного света, более полно ощущается связь с природой, к тому же существенно экономится электроэнергия. Тепло в таких зданиях сохраняется благодаря подобранным теплоизоляционным материалам стен, потолков, полов. Такие первое «солнечные» здания приобрели огромную популярность в Америке после Второй мировой войны. Впоследствии, из-за снижения цен на нефть, интерес к проектировке таких зданий несколько угас. Однако, сейчас, в связи с глобальным экологическим кризисом, наблюдается рост внимания к экологическим проектам с возобновляющимся энергетическим системам возросла вновь.

Активные системы использования солнечной энергии

В основе активных систем использования солнечной энергии применяются солнечные коллекторы. Коллектор, поглощая солнечную энергию , преобразует ее в тепло, которое через теплоноситель обогревает здания, нагревает воду, может преобразовать его в электрическую энергию и т.д. Солнечные коллекторы могут применятся во всех процессах в промышленности, сельском хозяйстве, бытовых нуждах, где используется тепло.

Виды коллекторов

воздушный солнечный коллектор

Это простейший вид солнечных коллекторов. Его конструкция предельно проста и напоминает эффект обычной теплицы, которая есть на любом дачном участке. Проведите небольшой эксперимент. В зимний солнечный день положите на подоконник любой предмет так, чтобы на него падали солнечные лучи и через некоторое время положите на него ладонь. Вы почувствуете, что этот предмет стал теплым. А за окном может быть — 20! Вот на этом принципе и основана работа солнечного воздушного коллектора.

Основной элемент коллектора — теплоизолированная пластина, сделанная из любого материала, который хорошо проводит тепло. Пластина окрашена в темный цвет. Солнечные лучи проходят через прозрачную поверхность, нагревают пластину, а потом потоком воздуха передают тепло в помещение. Воздух проходит благодаря естественной конвенции или при помощи вентилятора, что улучшает теплопередачу.

Однако, недостаток работы этой системы в том, что требуются дополнительные расходы на работу вентилятора. Эти коллекторы работают в течении светового дня, поэтому не могут заменить основной источник отопления. Однако, если вмонтировать коллектор в основной источник отопления или вентиляции, его КПД несоизмеримо возрастает. Солнечные воздушные коллекторы могут использоваться и для опреснения морской воды, что снижает ее себестоимость до 40 евроцентов за куб м.

Солнечные коллекторы могут быть плоскими и вакуумными.

плоский солнечный коллектор

Коллектор состоит из элемента, поглощающего солнечную энергию, покрытия (стекло с пониженным содержанием металла) , трубопровода и термоизолирующего слоя. Прозрачное покрытие защищает корпус от неблагоприятных климатических условий. Внутри корпуса панель поглотителя солнечной энергии (абсорбера) соединена с теплоносителем, который циркулирует по трубам. Трубопровод может быть как в виде решетки, так и в виде серпантина. Теплоноситель движется по ним от входных до выходных патрубков, постепенно нагреваясь. Панель поглотителя изготавливается из металла, хорошо проводящему тепло (алюминий, медь).

Коллектор улавливает тепло, превращая его в тепловую энергию. Такие коллекторы можно вмонтировать в крышу или расположить на крыше здания, а можно расположить их отдельно. Это придаст дизайну участка современный вид.

Вакуумный солнечный коллектор

Вакуумные коллекторы могут использоваться круглый год. Основным элементом коллекторов являются вакуумные трубки. Каждая из них состоит из двух стеклянных труб. Трубы изготавливают из боросиликатного стекла, причем внутренняя покрыта специальным покрытием, которое обеспечивает поглощение тепла с минимальным отражением. Из пространства между трубками выкачан воздух,. Для поддержания вакуума используется бариевый газопоглотитель. В исправном состоянии вакуумная трубка имеет серебристый цвет. Если она выглядит белой, то это значит, что вакуум исчез и трубку надо заменить.

Вакуумный коллектор состоит из комплекса вакуумных трубок (10-30) и осуществляет передачу тепла в накопительный резервуар через незамерзающую жидкость (теплоноситель). КПД вакуумных коллекторов высок:

— при облачной погоде, т.к. вакуумные трубки могут поглощать энергию инфракрасных лучей, которые проходят через облака

— могут работать при минусовых температурах.

Солнечные батареи.

Солнечная батарея — это набор модулей, воспринимающих и преобразующих солнечную энергию, в том числе и тепловых. Но этот термин традиционно закрепился за фитоэлектрическими преобразователями. Поэтому, говоря «солнечная батарея» подразумеваем фитоэлектрическое устройство, преобразующее солнечную энергию в электрическую.

Солнечные батареи способны генерировать электрическую энергию постоянно или аккумулировать ее для дальнейшего использования. Впервые фотоэлектрические батареи были применены в на космических спутниках.

Достоинство солнечных батарей — максимальная простота конструкции, простой монтаж, минимальные требования к облуживанию, большой срок эксплуатации. При установке не требуют дополнительного места. Единственное условие — не затенять их в течении длительного времени и удалять пыль с рабочей поверхности. Современные солнечные батареи способны сохранять работоспособность в течении десятилетий! Трудно найти систему настолько безопасную, эффективную и с таким длительным сроком действия! Они вырабатывают энергию в течении всего светового дня, даже в пасмурную погоду.

Солнечные батареи имеют свои недостатки в применении:

— чувствительность к загрязнениям. (Если расположить батарею под углом 45 градусов, то она будет очищена дождями или снегом, тем самым не потребуется дополнительного обслуживания)

— чувствительность к высокой температуре. (Да, при нагреве до 100 — 125 градусов солнечная батарея может даже отключиться и может потребоваться система охлаждения. Вентиляционная систстема при этом затратит малую долю вырабатываемой батареей энергии. В современных конструкциях солнечных батарей предусмотрена система оттока горячего воздуха.)

— высокая цена. (Принимая во внимание длительный срок службы солнечных батарей, то она не только окупит затраты на ее приобретение, но и сэкономит средства при потреблении электроэнергии, сэкономит тонны традиционных видов топлива при том экологически безопасна)

Использование солнечных энергетических систем в строительстве.

В современной архитектуре все чаще планируют строить дома с встроенными аккумуляторными источниками солнечной энергии. Солнечные батареи устанавливают на крышах зданий или на специальных опорах. Эти здания используют тихий, надежный и безопасный источник энергии — Солнце. Солнечная энергия используется для освещения, отопления помещений, охлаждения воздуха, вентиляции, производства электроэнергии.

Представляем несколько инновационных архитектурных проектов с использованием солнечных систем.

Фасад этого здания сконструирован из стекла, железа, алюминия с встроенными аккумуляторами солнечной энергии. Производимой энергии достаточно, чтобы не только обеспечить жителей дома автономным горячим водоснабжением и электричеством, но и освещать улицу 2,5 км в течении года.

Этот дом спроектировала группа американских студентов. Проект был представлен на конкурс «Проектирование, строительство домов и эксплуатация солнечных батарей». Условия конкурса: представить архитектурный проект жилого дома при его экономической эффективности, энергосбережении и привлекательности. Авторы проекта доказали, что их проект доступен, привлекателен для потребителя, сочетает превосходный дизайн и максимальную эффективность. (перевод с сайта www.solardecathlon.gov)

Использование систем солнечной энергии в мире.

Системы использования солнечной энергии совершенны и экологически безопасны. Во всем мире на них огромный спрос. Во всем мире люди начинают отказываются от использования традиционных видов топлива из-за роста цен на газ и нефть. Так, в Германии в 2004г. 47% домов имели солнечные коллекторы для нагрева воды.

Во многих странах мира разработаны государственные программы развития использования солнечной энергии . В Германии это программа «100 000 солнечных крыш», в США аналогичная программа «Миллион солнечных крыш». В 1996г. архитекторы Германии, Австрии, Великобритании, Греции и др. стран разработали Европейскую хартию о солнечной энергии в строительстве и архитектуре. В Азии лидирует Китай, где на основе современных технологий внедряются системы солнечных коллекторов в строительство зданий и использование солнечной энергии в промышленности.

Факт, который говорит о многом: одним из условий вступления в Евросоюз является рост доли альтернативных источников в энергосистеме страны. В 2000г. в мире работало 60 млн кв км солнечных коллекторов, к 2010г из площадь возросла до 300 млн кв км.

Эксперты отмечают, рынок систем солнечной энергии на территории России, Украины и Белоруссии только формируется. Солнечные системы никогда не производились в больших масштабах, потому что сырьевые ресурсы были настолько дешевы, что дорогостоящее оборудование гелиосистем было не востребовано… Выпуск коллекторов, в России, например, почти полностью прекращен.

В связи с подорожанием традиционных энергоносителей, наметилось оживление интереса с применению солнечных систем. В ряде регионов этих стран, испытывающих дефицит энергоресурсов, принимаются локальные программы по использованию гелиосистем, но широкому потребительскому рынку солнечные системы практически не знакомы.

Главная причина медленного развития рынка продажи и использования солнечных систем является, во-первых, их высокая начальная стоимость, во-вторых, недостаток информации о возможностях солнечных систем, передовых технологиях их использования, о разработчиках и изготовителях гелиосистем. Все это не может дать возможности правильно оценить эффективность применения систем, работающих на солнечной энергии .

Надо иметь в виду, что солнечный коллектор — не конечная продукция. Для получения конечной продукции — тепла, электроэнергии, горячей воды — надо пройти путь от проектирования, монтажа до пуска гелиосистем. Небольшой имеющийся опыт использования солнечных коллекторов показывает, что эта работа не сложнее монтажа традиционного отопления, но экономическая эффективность значительно выше.

В Белоруссии, России, на Украине есть множество фирм, занимающиеся проектировкой и монтажом оборудования отопления, но приоритет имеют сегодня традиционные энергоносители. Развитие экономических процессов, мировой опыт использования систем солнечной энергии показывает, что будущее за альтернативными источниками энергии. На ближайшее будущее можно отметить, что гелиосистемы являются новой, практически не занятой позицией нашего рынка.

В последние годы ученых особенно интересуют альтернативные источники энергии. Нефть и газ рано или поздно закончатся, поэтому подумать о том, как мы будем выживать в этой ситуации, приходится уже сейчас. В Европе активно используются ветряки, кто-то пытается извлечь энергию из океана, а мы поговорим о солнечной энергии. Ведь звезда, которую мы практически каждый день видим в небе, может помочь нам сберечь и улучшить экологическую обстановку. Значение солнца для Земли трудно переоценить - оно дает тепло, свет и позволяет функционировать всему живому на планете. Так почему бы не найти ему еще одно применение?

Немного истории

В середине 19 века физик Александр Эдмон Беккерель открыл фотогальванический эффект. А к концу столетия Чарльз Фриттс создал первый прибор, способный перерабатывать солнечную энергию в электричество. Для этого использовался селен, покрытый тонким слоем золота. Эффект был слабым, но именно это изобретение зачастую связывают с началом эры солнечной энергии. Некоторые ученые не согласны с такой формулировкой. Они называют родоначальником эры солнечной энергии всемирно известного ученого Альберта Эйнштейна. В 1921 году он получил Нобелевскую премию за объяснение законов внешнего фотоэффекта.

Казалось бы, солнечная энергия - это перспективный путь развития. Но существует немало препятствий для того, чтобы она вошла в каждый дом - в основном, экономических и экологических. Из чего складывается стоимость солнечных батарей, какой вред они могут нанести окружающей среде и какие еще существуют способы получения энергии, узнаем ниже.

Способы накопления

Самой актуальной задачей, связанной с приручением энергии солнца, является не только ее получение, но и аккумуляция. И именно это является самым сложным. В настоящее время учеными было разработано только 3 способа полноценного приручения солнечной энергии.

Первый основан на использовании параболического зеркала и немного напоминает игру с лупой, которая всем знакома с детства. Сквозь линзу свет проходит, собираясь в одной точке. Если в этом месте положить кусочек бумаги, она загорится, поскольку температура скрещенных солнечных лучей невероятно высока. Параболическое зеркало представляет собой вогнутый диск, напоминающий неглубокую чашу. Это зеркало, в отличие от лупы, не пропускает, а отражает солнечный свет, собирая его в одной точке, которая обычно направлена на черную трубу с водой. Такой цвет используют потому, что он лучше всего поглощает свет. Вода в трубе под действие солнечных лучей нагревается и может использоваться для получения электричества или для отопления небольших домов.

Плоский нагреватель

В этом способе используется совсем другая система. Приемник солнечной энергии выглядит как многослойная конструкция. Принцип его работы выглядит так.

Проходя через стекло, лучи попадают на затемненный металл, который, как известно, лучше поглощает свет. Солнечная радиация превращается в и нагревает воду, которая находится под железной пластиной. Далее все происходит как в первом способе. Нагретую воду можно использовали либо для отопления помещений, либо для получения электрической энергии. Правда, эффективность такого метода не настолько высока, чтобы использовать его повсеместно.

Как правило, полученная таким образом солнечная энергия - это тепло. Для получения электричества гораздо чаще используют третий способ.

Солнечные элементы

Больше всего мы знакомы именно с таким способом получения энергии. Он подразумевает использование различных батарей или солнечных панелей, которые можно встретить на крышах многих современных домов. Такой способ сложнее ранее описанных, но является намного более перспективным. Именно он дает возможность солнца в электричество в промышленных масштабах.

Специальные панели, предназначенные для улавливания лучей, делают из обогащенных кристаллов кремния. Солнечный свет, попадая на них, сбивает электрон с орбиты. На его место тут же стремится другой, таким образом получается непрерывная подвижная цепочка, которая и создает ток. Он при необходимости сразу используется для обеспечения приборов или накапливается в виде электроэнергии в специальных аккумуляторах.

Популярность этого способа обоснована тем, что он позволяет получить более 120 Вт всего с одного квадратного метра солнечной батареи. При этом панели имеют сравнительно небольшую толщину, что позволяет размещать их практически везде.

Типы кремниевых панелей

Существует несколько видов солнечных батарей. Первые выполнены с использованием монокристаллического кремния. Их коэффициент полезного действия составляет примерно 15%. Такие являются наиболее дорогими.

КПД элементов, изготовленных из поликристаллического кремния, достигает 11%. Стоят они меньше, поскольку материал для них получают по упрощенной технологии. Третий тип является наиболее экономичным и отличается минимальным КПД. Это панели из аморфного кремния, то есть некристаллического. Кроме низкой эффективности, они имеют еще один существенный недостаток - недолговечность.

Некоторые производители для увеличения КПД задействуют обе стороны панели солнечной батареи - тыльную и фронтальную. Это позволяет улавливать свет в больших объемах и увеличивает количество получаемой энергии на 15-20%.

Отечественные производители

Солнечная энергия на Земле получает все большее распространение. Даже в нашей стране заинтересованы в изучении этой отрасли. Несмотря на то что в России не очень активно идет развитие альтернативной энергетики, определенных успехов удалось добиться. В настоящее время созданием панелей для получения солнечной энергии занимаются несколько организаций - в основном это научные институты различной направленности и заводы по производству электрооборудования.

  1. НПФ "Кварк".
  2. ОАО «Ковровский механический завод».
  3. Всероссийский НИИ электрификации сельского хозяйства.
  4. НПО машиностроения.
  5. АО ВИЭН.
  6. ОАО «Рязанский завод металлокерамических приборов».
  7. АООТ Правдинский опытный завод источников тока «Позит».

Это только небольшая часть предприятий, принимающих активное участие в развитии альтернативной

Влияние на окружающую среду

Отказ от угольных и нефтяных источников энергии связан не только с тем, что эти ресурсы рано или поздно закончатся. Дело в том, что они сильно вредят окружающей среде - загрязняют почву, воздух и воду, способствуют развитию заболеваний у людей и снижению иммунитета. Именно поэтому альтернативные источники энергии должны быть безопасны с экологической точки зрения.

Кремний, который используется для производства фотоэлементов, сам по себе безопасен, поскольку является природным материалом. Но после его очистки остаются отходы. Именно они могут нанести вред человеку и окружающей среде при неправильном использовании.

Кроме того, на участке, полностью заставленном солнечными батареями, может нарушиться естественное освещение. Это приведет к изменениям в существующей экосистеме. Но в целом влияние на окружающую среду устройств, предназначенных для преобразования солнечной энергии, минимально.

Экономичность

Самые большие затраты по связаны с дороговизной сырья. Как мы уже выяснили, специальные панели создаются с использованием кремния. Несмотря на то что этот минерал широко распространен в природе, с его добычей связаны большие проблемы. Дело в том, что кремний, который составляет более четверти массы земной коры, не подходит для производства солнечных батарей. Для этих целей пригоден только чистейший материал, получаемый промышленным способом. К сожалению, из песка получить чистейший кремний крайне проблематично.

По цене данный ресурс сравним с ураном, использующимся на АЭС. Именно поэтому стоимость солнечных батарей в настоящее время остается на довольно высоком уровне.

Современные технологии

Первые попытки приручить солнечную энергию появились достаточно давно. С тех пор многие ученые активно заняты поисками максимально эффективного оборудования. Оно должно быть не только экономически выгодным, но также компактным. Его КПД должен стремиться к максимуму.

Первые шаги к идеальному прибору для получения и преобразования солнечной энергии были сделаны с изобретением кремниевых батарей. Конечно, цена достаточно высока, но зато панели могут быть размещены на крышах и стенах домов, где они никому не будут мешать. А эффективность таких батарей неоспорима.

Но лучший способ увеличить популярность солнечной энергии - сделать ее более дешевой. Немецкие ученые уже предложили заменить кремний синтетическими волокнами, которые могут быть интегрированы в ткань или другие материалы. КПД такой солнечной батареи не очень высок. Но рубашка с вкраплением синтетических волокон сможет, по крайней мере, обеспечить электроэнергией смартфон или плеер. Активно ведутся работы и в области нанотехнологий. Вероятно, именно они позволят солнцу стать наиболее популярным источником энергии уже в этом столетии. Специалисты компании Scates AS из Норвегии уже заявили, что нанотехнологии позволят сократить стоимость солнечных панелей в 2 раза.

Солнечная энергия для дома

О жилье, которое само себя будет обеспечивать, наверняка мечтают многие: нет зависимости от централизованного отопления, сложностей с оплатой счетов и вреда для окружающей среды. Уже сейчас во многих странах активно строится жилье, потребляющее только энергию, полученную из альтернативных источников. Яркий пример - так называемый солнечный дом.

В процессе строительства он потребует больших вложений, чем традиционный. Но зато после нескольких лет эксплуатации все затраты окупятся - не придется платить за отопление, горячую воду и электричество. В солнечном доме все эти коммуникации привязаны к специальным фотоэлектрическим панелям, размещенным на крыше. Причем полученные таким образом энергетические ресурсы не только расходуются на текущие нужды, но и накапливаются для использования в ночное время и при пасмурной погоде.

В настоящее время строительство таких домов ведется не только в странах, приближенных к экватору, где добывать солнечную энергию проще всего. Их возводят также и в Канаде, Финляндии и Швеции.

Плюсы и минусы

Развитие технологий, позволяющих повсеместно использовать солнечную энергию, могло бы вестись более активно. Но существую определенные причины, по которым это все еще не является приоритетной задачей. Как мы уже говорили выше, при производстве панелей вырабатываются вредные для окружающей среды вещества. Кроме того, готовое оборудование содержит в своем составе галлий, мышьяк, кадмий и свинец.

Немало вопросов вызывает и необходимость утилизации фотоэлектрических панелей. Через 50 лет работы они станут непригодными для службы, и их придется каким-то образом уничтожать. Не нанесет ли это колоссальный вред природе? Стоит также учитывать, что солнечная энергия - это непостоянный ресурс, эффективность получения которого зависит от времени суток и погоды. А это является существенным недостатком.

Но и плюсы, конечно, есть. Солнечную энергию можно добывать практически в любой точке Земли, а оборудование для ее получения и преобразования может быть настолько маленьким, что поместится на тыльной стороне смартфона. Что еще немаловажно, это возобновляемый ресурс, то есть количество солнечной энергии будет оставаться неизменным еще как минимум тысячи лет.

Перспективы

Развитие технологий в области солнечной энергетики должно привести к снижению затрат на создание элементов. Уже сейчас появляются стеклянные панели, которые могут быть установлены на окнах. Развитие нанотехнологий позволило изобрести краску, которая будет напыляться на солнечные батареи и сможет заменить кремниевый слой. Если стоимость солнечной энергии действительно снизится в несколько раз, ее популярность также вырастет многократно.

Создание маленьких панелей для индивидуального применения позволит людям в любых условиях использовать солнечную энергию - дома, в машине или даже за городом. Благодаря их распространению снизится нагрузка на централизованные электросети, поскольку люди смогут самостоятельно зарядить мелкую электронику.

Специалисты компании Shell полагают, что к 2040 году около половины энергии в мире будет создаваться за счет возобновляемых ресурсов. Уже сейчас в Германии потребление солнечной энергии активно растет, а мощность батарей составляет более 35 Гигаватт. Япония также активно развивает эту отрасль. Две эти страны - лидеры потребления солнечной энергии в мире. Вероятно, скоро к ним присоединятся и Соединенные Штаты.

Другие альтернативные источники энергии

Ученые не перестают ломать голову над тем, что еще можно использовать для получения электричества или тепла. Приведем примеры наиболее перспективных альтернативных источников энергии.

Ветряки сейчас можно встретить практически в любой стране. Даже на улицах многих российских городов устанавливают фонари, которые сами обеспечивают себя электричеством за счет энергии ветра. Наверняка их себестоимость выше средней, но зато со временем они эту разницу возместят.

Достаточно давно была придумана технология, позволяющая получать энергию, используя разницу температур воды на поверхности океана и на глубине. Китай активно собирается развивать это направление. В ближайшие годы у берегов Поднебесной собираются построить крупнейшую электростанцию, работающую по этой технологии. Существуют и другие способы использования моря. Например, в Австралии планируют создать электростанцию, генерирующую энергию из силы течений.

Есть и многие другие или тепла. Но на фоне многих других вариантов солнечная энергия - это действительно перспективное направление развития науки.

Солнечная энергия дает жизнь всему живому на Земле. Под ее воздействием испаряется вода с морей и океанов, превращаясь в водные капли, образуя туманы и облака. В результате, эта влага вновь выпадает на Землю, создавая постоянный круговорот. Поэтому, мы постоянно наблюдает снег, дождь, иней или росу. Создаваемая солнцем огромная система отопления, позволяет наиболее оптимально распределять тепло по поверхности Земли. Чтобы правильно понимать и использовать эти процессы, необходимо представлять себе источник энергии солнца и то, от чего зависит его влияние на нашу планету.

Виды солнечной энергии

Основным видом энергии, выделяемой Солнцем, по праву считается лучистая энергия, оказывающая прямое влияние на все важнейшие процессы, происходящие на Земле. Если сравнивать с ней другие земные энергетические источники, то их запасы бесконечно малы и не позволяют решить всех проблем.

Из всех звезд, Солнце расположено к Земле ближе всего. По своей структуре оно является газовым шаром, многократно превышающим диаметр и объем нашей планеты. Поскольку размеры газового шара достаточно условны, то его границами считается видимый с Земли солнечный диск.

Источник и физические свойства солнечной энергии

Все процессы, происходящие на Солнце, можно наблюдать лишь на его поверхности. Однако, основные реакции протекают в его внутренней части. По сути, это гигантская атомная станция с давлением примерно 100 млрд. атмосфер. Здесь, в условиях сложных ядерных реакций, происходит превращение водорода в гелий. Именно эти реакции образуют основной источник энергии солнца. Внутренняя температура составляет, в среднем, приблизительно 16 млн. градусов.

Газ, бушующий внутри Солнца, имеет не только сверхвысокую температуру, но и является чрезвычайно тяжелым, обладающим плотностью, многократно превышающей среднюю солнечную плотность. Одновременно, происходит возникновение рентгеновских лучей, которые, по мере приближения к Земле, увеличивают длину своих волн и уменьшают частоту колебаний. Таким образом, они постепенно становятся видимым и ультрафиолетовым светом.

При отдалении от центра, характер лучистой энергии изменяется, оказывая влияние и на температуру. Происходит ее постепенное снижение сначала до 150 тыс. градусов. С Земли хорошо видна только внешняя солнечная оболочка, так называемая фотосфера. Ее толщина составляет примерно 300 км, а температура верхнего слоя снижается до 5700 градусов.

Над фотосферой расположена солнечная атмосфера, состоящая из двух частей. Нижний слой носит название хромосферы, а верхний слой, не имеющий границ, представляет собой солнечную корону. Здесь газы разогреваются до нескольких миллионов градусов под действием ударных волн чудовищной силы.